MATH 103B - Discussion Worksheet 8 June 8, 2023

Topic: Galois theory (Judson Chapter 23.1-2)
Announcements:

1. The final exam will take place on Wednesday June 14 3-4:30 pm.
2. Steve will hold office hours next Tuesday and Wednesday 10:30-12:30 at AP\&M 5412. Please email (yoh011@ucsd.edu) in advance if you are coming.

Example 0.1. $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not Galois, whereas $\mathbb{Q}\left(\sqrt[3]{2}, \zeta_{3}\right) / \mathbb{Q}$ is Galois with $\operatorname{Gal}\left(\mathbb{Q}\left(\sqrt[3]{2}, \zeta_{3}\right) / \mathbb{Q} \cong\right.$ S_{3}.

Problem 1. Consider $\mathbb{Q}\left(\zeta_{5}\right) / \mathbb{Q}$ (recall $\zeta_{5}=e^{2 \pi i / 5}$ is a primitive fifth root of unity). This is a Galois extension with $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{5}\right) / \mathbb{Q}\right) \cong \mathbb{Z} / 4 \mathbb{Z}$ generated by $\varphi\left(\zeta_{5}\right)=\zeta_{5}^{2}$.
a) Compute $\varphi^{2}\left(\zeta_{5}\right)$.
b) Show that φ^{2} fixes $\zeta_{5}+\zeta_{5}^{4}$.
c) Show $\mathbb{Q}\left(\zeta_{5}+\zeta_{5}^{4}\right)=\mathbb{Q}\left(\zeta_{5}\right)^{\left\langle\varphi^{2}\right\rangle}$.

Problem 2. Consider $\mathbb{Q}\left(\sqrt[3]{5}, \zeta_{3}\right) / \mathbb{Q}$. This is a Galois extension with $\operatorname{Gal}\left(\mathbb{Q}\left(\sqrt[3]{5}, \zeta_{3}\right) / \mathbb{Q}\right) \cong$ S_{3}, the symmetric group on three letters. Recall $S_{3}=\left\langle\sigma, \tau \mid \sigma^{3}=\tau^{2}=1, \sigma \tau=\tau \sigma^{-1}\right\rangle$. We have

$$
\sigma(\sqrt[3]{5})=\zeta_{3} \sqrt[3]{5}, \sigma\left(\zeta_{3}\right)=\zeta_{3} ; \tau(\sqrt[3]{5})=\sqrt[3]{5}, \tau\left(\zeta_{3}\right)=\zeta_{3}^{2}
$$

a) List all elements of S_{3}.
b) Find the subgroup of S_{3} corresponding to the subfield $\mathbb{Q}\left(\zeta_{3}\right) \subseteq \mathbb{Q}\left(\sqrt[3]{5}, \zeta_{3}\right)$. Your answer should list the elements in the subgroup explicitly.
c) Prove directly (i.e. without using field theory) that the subgroup you obtained in Part b is normal in S_{3}.

